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Abstract
We study the problem of N electrons confined to a hard three-dimensional
spherical box, for N = 3, 4 and 5. Full-configuration interaction and Hartree–
Fock calculations have been performed. We report energies, densities, second-
order density matrices and exchange–correlation holes. In the N = 4 system,
we observe a spin transition as the radius R of the sphere is increased, changing
the ground state from 3P to 5S. The N = 3 and 5 systems remain 2P and
4S, respectively, for all R investigated. Pair-correlation functions and physical
exchange–correlation holes have been computed over a regime in which the
systems transform from liquid droplets to Wigner molecules. These functions
show marked, yet characteristic, changes in this regime. By computing |Ec/E |,
where Ec is the correlation energy defined with respect to the unrestricted
Hartree–Fock solution, we show that the maximum relative error in the UHF
energies occurs in this crossover regime. These systems provide challenging
benchmarks for post-Hartree–Fock and density functional theory methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interacting electron systems which are amenable to exact solution provide an interesting and
uniquely detailed picture regarding electron correlation,as well as stringent quantitative tests of
approximations, e.g. Hartree–Fock (HF) theory [1, 2] or density functional theory (DFT) [3, 4],
to which one usually resorts in order to tackle realistic systems. In particular the full-
configuration interaction method (FCI), if carried out to convergence, provides unbiased
correlated wavefunctions which can be analysed in terms of pair-correlation functions, the
associated exchange–correlation holes and natural orbitals. Whilst the wavefunction itself is a
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cumbersome entity to deal with, these reduced quantities essentially completely characterize
the correlation in the system. They are, however, far from simple. Being able to ‘look’ at
these functions, and analyse them, is an exciting prospect. It is not even necessary to restrict
to ground states: a powerful feature of the FCI method is that, with essentially no additional
computational effort, one can obtain low lying excited states as well. Understanding the
behaviour of the exact solutions is an important step towards modelling the correlation functions
quantitatively. Since any approximate functional has an underlying (and usually unknown)
pair-correlation function, an improved understanding may well help with the ultimate goal of
designing more accurate functionals.

Of the various model electron systems, perhaps the best studied of all is the uniform
electron gas (UEG), which is characterized by the single parameter rs. The local density
approximation is rooted in this system which, for metallic systems in particular, has been
singularly successful. Yet, it is a curious system: the interacting ground state density is the
same as the non-interacting density at all rs! In fact, it has excited states which are uniform
as well. Moving towards an inhomogeneous system still characterized by a single parameter
is clearly desirable. Consider, for example, the Hooke’s law atom, or Harmonium, system
of electrons confined by a parabolic potential of given strength. This analytically solvable
model [5, 6] has been used to great effect to assess DFT and HF theories alike [5, 7, 8] and
admits testing in both the weakly and strongly correlated regimes. In a recent paper Taut
et al extended the two-electron Harmonium to a three-electron system, using perturbation
techniques—it is remarked that the method employed is generalizable to an arbitrary number
of electrons [9]. It is with a somewhat similar motivation that we present this work.

Recent work by the present authors and, concurrently, Jung and Alvarellos has looked
at a two-electron system confined by an infinite hard walled box of either cuboidal [10] or
spherical [11, 12] shape. We have also reported in a letter an extension of the spherical box up to
five electrons [13]. Here we give a more complete account of this work, concentrating mainly
on full-configuration interaction calculations. In this model, the strength of the correlation
between the particles is mediated through the radius R of the confining sphere. The accurate
solutions to the two-electron spherical problem have been compared to both HF [14] and
commonly used density functional solutions [15] where it is observed that the local density,
generalized gradient and meta-generalized gradient approaches do rather poorly, whilst the
unrestricted Hartree–Fock approach does remarkably well in the large R regime. There have
also been many theoretical studies of 2D quantum dots in a variety of confining potentials,
which differ in the shape of the boundary (e.g. circular or polygonal), or the curvature of
the potential (harmonic or hard walled)—for an interesting review see [16]. Mikhailov [17]
has examined, using exact diagonalization, a three-electron parabolically confined 2D system
(quantum-dot ‘lithium’), and the crossover from Fermi liquid behaviour to a Wigner molecule.
An alternative benchmark method is the diffusion quantum Monte Carlo method (as applied
to quantum dots; see [18]). The emphasis on the 2D systems no doubt comes from the
experiment, where the 2D confinement of a electron gas in a semiconductor heterostructure
through electrostatic gating is feasible. On the other hand, such few-electron quantum systems
serve as a ‘playground’ [16] in which to study interacting electron physics; we view our model
in this vein. The three-dimensional nature of it could be relevant to real systems—for example,
by providing insight into the crossover between Fermi liquid and Wigner molecule behaviour
in 3D systems. However, we admit that the specific experimental realization of our model
could be challenging.

In this paper we present a generalized configuration interaction algorithm for computing
the ground and low lying states of N interacting electrons confined through an infinite spherical
potential of radius R. It is organized in the following way. In section 2 we present the general
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methodology employed. In section 3 we present results for the ground and low lying energetic
states of the three-, four- and five-electron systems. In section 4 we give conclusions.

2. Method

The many-body Hamiltonian is given by (Hartree atomic units h̄ = me = e2 = 1 are used
throughout)

Ĥ =
N∑

i=1

(
−1

2
∇2

i + v̂ext(ri )

)
+

∑
i< j

1

|ri − r j | , (1)

where the 3D external potential is defined through

v̂ext(r) =
{

0, r < R,

∞, r � R.
(2)

To solve this problem we expand the many-body wavefunction as a linear combination of
Slater determinants:

�i (x1, x2, . . . , xN ) =
∑

j

ci j� j (x1, x2, . . . , xN )

=
∑

j

ci j |ηn1(x1)ηn2(x2) · · ·ηnK (xN )〉, (3)

where the spin orbital ηn has the functional form

ηnlms (r, σ ) = Nnl jl(αnlr)Ylm(θ, φ)δσ,s (4)

and the j in equation (3) is shorthand for the particular determinant in question. We generate,
given a user supplied list, any desired set of these functions. Selection of functions in this
way allows us to restrict our attention to those that specifically contribute in the determinantal
expansion. For clarity we shall take the total set of basis functions used, for example, 1f2d3p4s,
to mean all functions 1s, 1p, 1d, 1f, 2s, 2p, 2d, 3s, 3p and 4s, inclusive.

Once we have specified a set of basis functions, we ladder them energetically. This
laddering procedure is done with respect to the one-particle energies; these are found to
order such that 1s < 1p < 1d < 2s < 1f < 2p < · · · [19]. Having ordered the basis functions
appropriately we construct a reference determinant out of the N lowest energy orbitals. We
note that the reference state in the configuration interaction is usually the HF determinant;
however, we find that a determinant constructed from the N lowest orbitals is a good choice
for this system.

Given this reference determinant, we generate all possible excitations from it. The total
number of such states is given by the binomial coefficient of N , the number of electrons and
2K , the total number of spin orbitals; the size of the determinant space increases exponentially
as a function of K . In order to reduce this space we apply some restrictions to the determinants
included in the expansion. Recalling that the many-body wavefunction is an eigenfunction of
both Lz and Sz , and that the total spin or angular momentum projection quantum number, for
any given determinant, is given by

ML =
N∑
i

ml(i),

MS =
N∑
i

ms(i),

(5)

we label the CI wavefunction (equation (3)) with the appropriate ML and MS quantum numbers.
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Having generated the determinant space we construct the matrix representation of the
Hamiltonian. In computing the matrix elements 〈D|H |D′〉 (where D and D′ represent
determinants in equation (3)), one takes advantage of the well-known Slater–Condon
rules [20, 21] as applied to an orthogonal one-electron basis. This reduces the problem to terms
involving only one- and two-electron integrals, the forms of which have been detailed in [11].
The Hamiltonian matrix is diagonalized using the Pollard–Friesner algorithm [22], which is
an efficient iterative method based on Lanczos recursion, to obtain a user-specified number of
the extremal eigenvectors of a Hermitian matrix. The diagonalization of the Hamiltonian, in
all but the largest of calculations, did not present a significant computational bottleneck.

2.1. Calculation of the N-electron density, second-order density matrix and physical
exchange–correlation hole

Given the CI wavefunction as defined through equation (3), we seek to calculate properties
which will help us understand the physics of these many-electron systems. We shall consider
the electron density and many-body properties such as the second-order density matrix and
the physical exchange–correlation hole.

2.1.1. Electron density. The electron density of the system is given by

n(r) = 〈�|n̂(r)|�〉, (6)

with the one-body number density operator, n̂(r), being defined through

n̂(r) =
∑

i

δ(r − ri). (7)

Contributions arising from determinants that differ by two or more spin orbitals is zero. For
those determinants that differ by one spin orbital the subsequent contribution is given by the
product of the orbitals that they differ by (η∗′

n (r)ηn(r)). When considering determinants that
differ by no spin orbital (i.e. they are the same determinant), the resulting contribution to the
electronic density is

∑N
i η∗

i (r)ηi(r).

2.1.2. The second-order density matrix and exchange–correlation hole. We know that for the
two-electron problem the physical exchange–correlation hole can be written solely in terms
of the two-electron wavefunction [23]. In the case of an N-electron system there is no such
simple relationship with the many-body wavefunction. We can relate the physical exchange–
correlation hole to the second-order density matrix such that

nxc(r, r′) = 2n2(r, r′)
n(r)

− n(r′) (8)

where the spinless second-order density matrix is defined through

n2(r, r′) = N(N − 1)

2

∫
· · ·

∫
|�|2 ds1 ds2 dx3 · · · xN . (9)

Thus, this many-body density matrix, together with the electron density, yields the physical
exchange–correlation hole. Although this is formally a six-dimensional object, we specify as
input the position of r and calculate a three-dimensional n2 as a function of r′. After computing
n2 and nxc we ensure that the latter object satisfies a sum rule, i.e. integrates to −1, and that
the integral of the second-order density matrix yields the value of the density at the reference
point:

n(r) = 2

N − 1

∫
n2(r, r′) dr′. (10)
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This quantity allows us to probe the spatial correlation between the electrons as a function of
the reference particle position r and sphere radius R for not only the ground state, but low
lying excited states as well. This information will be interesting to researchers in the field of
functional development, as the shape of the exchange–correlation hole is often a key tool in
novel functional design [24].

2.1.3. Natural orbitals. The natural orbitals are eigenfunctions of the one-body density
matrix, and their associated eigenvalues are occupation numbers which range from 0 to 1.
The natural orbitals provide extremely interesting insight into the structure of the many-body
wavefunction �MS ML (x1, . . . , xN ), and are a natural, correlated, single-particle basis.

We compute the one-body reduced density matrix γ1(x, x′) [23] and perform the resulting
integration over determinants using the Slater–Condon rules. We then form a matrix
representation of γ1 in terms of the original one-particle basis functions (equation (4)). The
resulting equation is viewed as a sum of diagonal and off-diagonal terms, where, in the latter
case, j ′ can only be a single excitation from j :

〈ηn|γ1|ηn′ 〉 = N

[∑
j∈n

c2
jδnn′ +

∑
j

c j c j ′( j)

]
. (11)

The eigenvalues and eigenvectors of this matrix are the occupation numbers and the natural
orbitals of the system respectively. It is then straightforward, using the natural orbitals, to
perform a total angular momentum decomposition of the many-body wavefunction.

3. Results

3.1. Three-electron system

As the many-body wavefunction is an eigenfunction of both L̂2 and Ŝ2, we can assign term
symbols to it. For a three-electron system we find that the two lowest competitive states are
the 2P and 4P.

The first question to be addressed is which of the two is the ground state as a function of
R. Based on a simple kinetic energy versus potential energy consideration, one might guess
that the 2P (being derived from s2p) would be the ground state at small R, and the 4P (derived
from sp2) to be the ground state at large R, the rationale for this being that such hybrid orbitals
form an equilateral triangle, precisely the shape required to minimize the Coulomb repulsion
between the three electrons. In table 1 below we present the energies of these two states for a
range of sets of spin orbitals, here R = 5. The maximum sized set consisted of 182 orbitals
and both the 2P and 4P energies are well converged with respect to the basis up to 1 part in
105. Note also that the states are well resolved.

In table 2 we present the four largest basis set energies for the R = 20 system; the 2P and
4P energies remain well separated with E(4P) > E(2P). For large R the convergence of these
states is seen to depend sensitively upon the basis. For a minimal basis (1p) at R = 20 we
find E(2P) = 0.266, while E(4P) = 0.260. In other words, for a minimal basis, the 4P does
indeed have a lower energy than the 2P. An increase in the basis size to the 1d2p level reverses
this order; subsequent increases lower the energy variationally without altering the ordering.
Therefore, we arrive at an important result which contradicts our simple expectation that, in
the large R limit, the 4P state should be the ground state. In other words, the configuration
interaction more effectively lowers the energy of the 2P state compared to the 4P state. By
performing a natural orbital analysis [13], one can show that the 2P state evolves from s2p
to a more complex configuration with depleted s content, and increased p and d content.
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Table 1. Showing the energy, in atomic units, of the 2P and 4P states in the three-electron problem.
We present results for R = 5. We indicate the basis set by giving lmax for each n; e.g. 1d2p implies
a basis set with 1s, 1p, 1d, 2s and 2p functions, inclusive.

No of No of
Basis set spin orbitals determinants 2P 4P

1g 50 19 600 1.675 4436 1.762 4862
1g2g 100 161 700 1.629 8614 1.735 5872
1g2g3g 150 551 300 1.629 2023 1.735 4495
1g2g3g4s 152 573 800 1.629 1866 1.735 4472
1g2g3g4p 158 644 956 1.629 1716 1.735 4412
1g2g3g4d 168 776 216 1.629 1613 1.735 4400
1g2g3g4f 182 988 260 1.629 1534 1.735 4392

Table 2. Showing the energy, in atomic units, of the 2P and 4P states in the three-electron problem.
Here R = 20.

Basis set 2P 4P

1g2g3g4s 0.225 090 04 0.227 488 24
1g2g3g4p 0.225 084 07 0.227 478 83
1g2g3g4d 0.225 083 82 0.227 478 66
1g2g3g4f 0.225 083 78 0.227 478 65

The p content does not reach 2. The higher angular momentum orbitals (d in particular) play
a crucial role in stabilizing the 2P state.

In figure 1 we consider the ground state electron density. The most important point to
notice is that the densities are not spherically symmetric, and, being P states and degenerate,
they are labelled according to their ML values. We present the 2P ML = ±1 (left) and
2P ML = 0 (right) densities for R = 1, 5 and 20. The ML = ±1 densities are oriented such
that the xy plane is shown, whilst in the ML = 0 instance we show the yz plane. In the former
case the maximal contour is highlighted. This has a well-developed ring structure to it and the
radii of this shape are seen to increase with increasing R. For ML = 0 the maximal density is
located in two regions, equidistant from the origin, at opposite points along the z-axis. Figure 2
shows, for R = 1 and 20, the 4P ML = ±1 (left) and 4P ML = 0 (right) excited state densities
for this three-electron system. The structures of the densities shown in figures 1 and 2 are
easily understood in terms of the ML quantum number and the principal character of the CI
wavefunction as revealed through the natural orbital analysis.

In figure 3 we compute the function Ec/E for a number of values of rs = R/N1/3, where
the correlation energy, Ec, is defined in terms of the UHF ground state energy:

Ec = E − EUHF. (12)

The rationale for this is that |Ec/E | measures the relative error in the UHF energies. This is
important since both E and −Ec are positive, and decreasing, functions of rs, and we need
a measure of the magnitude of Ec compared to the exact total energy E . We note that for
small rs the Ms = 1

2 UHF state is a reasonable approximation to the exact one. We observe a
transition in the UHF ground state to the Ms = 3/2 state at rs = 7.12. For small rs, Ec/E is a
linear increasing function of rs. |Ec/E | achieves a maximum value of ∼0.048 at rs ∼ 6.9, and
thereafter decreases, reaching an asymptotic value of ∼0.04 for large rs. This indicates that
the UHF description of the deep Wigner molecule regime is better than the crossover regime.
The high spin UHF state helps to keep the electrons apart through their Fermi holes.
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Figure 1. Left: the 2P ML = ±1 three-electron density as a function of R; the xy plane is shown.
From top to bottom we consider R = 1, 5 and 20. Right: the 2P ML = 0 three-electron density
for the same range of sphere sizes; here, the yz plane is shown. The 2P FCI wavefunction has
predominantly s2p character.

To illustrate the change in the pair correlation of the system as a function of rs we have
computed the two-body density matrix. We consider the 2P ML = ±1 state (having a ring-like
density as seen in figure 2). A reference particle is placed within the region of high density,
halfway along the x-axis at (0.5R, π/2, 0). We consider R = 1 (weakly correlated) and
R = 20 (Wigner molecule regime) and include these as insets to figures 3(a)–(c) respectively.
The figures are oriented such that the reader is looking down the x-axis. The R = 1 state
exhibits a single peak (maximal contour shown, highlighted in white) diametrically opposite
the reference particle (highlighted with a dot, in the centre of the image), implying that the
most likely location of a particle is roughly opposite the reference particle. This is the situation
that one would expect in a liquid-like system. As R increases this peak splits into two broad
peaks; indeed the deepening of the value of |Ec/E | correlates with the splitting of the single
peak into two well-resolved peaks. Inset (b) shows the density matrix for the ‘most correlated’
value of rs ∼ 6.9.

Changes in the shape of the second-order density matrix as a function of reference particle
position are investigated in figure 4; we show n2(r, r′) for a quarter of the way along the z-axis
i.e. r = (0.25R, 0, 0). We see that the maximal contour, in all cases, is azimuthally symmetric,
entirely consistent with the densities observed for these systems. Also, there appears to be, for
increasing R, an enhancement of probability around the reference particle, most clearly seen
in the 4P case.
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Figure 2. Left: the 4P ML = ±1 three-electron density as a function of R; the yz plane is shown.
Right: the 4P ML = 0 three-electron density for the same range of sphere sizes with the xy plane
shown. We consider R = 1 (top) and 20 (bottom).
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rs = 0.693 rs = 6.93 rs = 13.87

(b)
(c)

Figure 3. The ratio Ec/E is computed using the UHF ground state energy. We observe a maximally
correlated region (rs = 5–10) which corresponds to the formation of a Wigner-like state. The insets
(a)–(c) show two-body density matrices, n2(r, r′), for R = 1, 10 and 20 respectively. The reference
particle, highlighted at the centre of the image, is placed at (0.5R, π/2, 0), halfway along the x-
axis. In all cases, near maximal contours are shown. The contours used for insets (a)–(c) are 1.85
(1.875), 1.2 × 10−3 (1.17 × 10−3) and 1.29 × 10−4 (1.22 × 10−4). The numbers in parentheses
correspond to the maximal contours calculated.

For R = 20 a breakdown of the total energy into its kinetic and Coulombic contributions is
shown below in table 3. For this large value of R the 4P (high spin) state has a lower Coulomb
energy than the corresponding 2P state. However, the kinetic energy is sufficiently higher to
offset this gain. This table indicates the delicate balance between 〈�T 〉 and 〈�U〉 for the two
states in this system.
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Figure 4. The second-order density matrix for R = 1 and 20 for the 2P ML = ±1 state (left) and
the 4P ML = 0 state (right). The reference particle is shown with a small, solid dot and is placed
along the z-axis at (0.25R, 0, 0). The figures are oriented such that the xz plane is shown.

Table 3. Breakdown of the kinetic and potential energies of the CI wavefunctions for the three-
electron system in the large sphere limit (R = 20), calculations have been performed using the
1g2g3g4f basis set.

N = 3 〈T 〉 〈U〉 〈E〉
(2P) 0.0751 0.1500 0.2251
(4P) 0.0794 0.1481 0.2275

3.2. Four-electron system

In the high density regime the four-electron system is well described by the electronic
configuration s2p2. The term symbols arising from such a configuration are 3P, 1D and 1S.
Ordering these states energetically using Hund’s rules we find 3P < 1D < 1S. We find all of
these states in their correct ratios (9:5:1), ordered in the correct way for small R. Increasing
the size of the sphere leads to an excited state becoming competitive with the 3P ground state.
This excited state is found to be fivefold degenerate with L = 0; we identify it as a 5S state and
its principal determinantal configuration is sp3. The energy convergence as a function of basis
set, for R = 5, is detailed in table 4. The largest system of study—the 1g2g3p basis—although
giving the lowest energy for R = 5, actually does not perform as well as the 1g2f3d4s basis at
R = 20; for consistency, at all R, we use this more ‘flexible’ basis. This illustrates important
changes in the system. At R = 20 the 5S state is now the ground state; we observe a transition
to a fully spin-polarized ferromagnetic ground state as a function of increasing R. Indeed the
5S state cascades down from being a low lying excited state to being competitive with the s2p2

manifold, with the final 3P → 5S crossover occurring at R = 13.79 (rs = 8.69). This transition
is seen most clearly in figure 5 where we plot (EX(R)− E5S(R)) ·r2

s for X = 3P (configuration
interaction), and the UHF states Ms = 0, 1 and 2. The energy difference between the 3P and
5S states decreases rapidly, changing sign at rs ≈ 8.69, and then increasing, albeit slowly,
as a function of R. The UHF solutions undergo an Ms = 0 → 2 transition at rs = 3.81,
foreshadowing the transition in the exact ground state at a somewhat higher density.

As distinct from the N = 3 system, therefore, the N = 4 system shows a spin transition
to a high spin state, both at the UHF level and in the FCI, albeit at different radii. The function
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Figure 5. The energy difference between 5S and the 3P configuration interaction energies. At
rs ≈ 8.7, 5S becomes the ground state. We also show the differences between the unrestricted
Hartree–Fock energies for Ms = 0, 1 and 2. The UHF high spin state is stabilized at a much higher
density, rs = 3.81.

Table 4. Showing the energy, in atomic units, of the 3P and 5S states in the four-electron problem.
Here R = 5.

No of No of
Basis set spin orbitals determinants 3P 5S

1p 8 70 2.966 240 55 2.970 947 87
1d 18 3 060 2.908 671 59 2.948 259 97
1f 32 35 960 2.901 870 32 2.943 739 73
1g 50 230 300 2.901 271 32 2.943 361 76
1g2f 82 1749 060 2.805 822 82 2.875 801 54
1g2f3s 84 1929 501 2.804 465 52 2.875 607 41
1g2f3p 90 2555 190 2.803 949 06 2.875 170 81
1g2f3d 100 3921 225 2.803 870 82 2.875 156 41
1g2f3d4s 102 4249 575 2.803 829 61 2.875 151 80
1g2g3s 102 4249 575 2.804 269 61 2.875 537 89
1g2g3p 108 5359 095 2.803 760 60 2.875 104 43

Ec/E , where Ec = E(FCI)− E(UHF), is therefore expected to have discontinuous behaviour
as both the FCI ground state and the UHF solutions undergo spin transitions. This is shown in
figure 6 (bold curve). The FCI and UHF (RHF) calculations were performed using the 1g2f3d4s
and 1f2f3f basis sets respectively. The kink at rs = 3.81, giving rise to a marked local maximum
in |Ec/E |, is due to the UHF spin transition, which also signals the onset of Wigner molecule
formation. One can also compute |Ec/E | defined with respect to the low spin and high spin
UHF and FCI states separately, for which one expects smooth behaviour. In the case of the
Ms = 1 state, one finds that for small rs, |Ec/E | is larger than the corresponding high spin state,
indicating that the correlation energies in the low spin states are larger than the corresponding
high spin state. This is another indication that the configuration interaction more effectively
lowers the energy of the low spin configurations than the high spin ones. Nevertheless, the
maximum UHF relative error is less than 5%, by contrast to the RHF relative error (shown in
the inset) which grows with increasing rs, exceeding 20% at large rs. The attenuating UHF
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Figure 6. Ec/E against rs for the four-electron system. We compute this quantity for both UHF
states and for the overall UHF ground state. The inset shows the Ec/E function corresponding to
the RHF eigenvalues.

Figure 7. Three-dimensional plots of the electronic density for the 3P ML = ±1 (left) and 5S
(right) four-electron states. In the former instance the yz plane is shown. We consider R = 1 (top)
and 20 (bottom).

error is an indication that the Wigner molecule limit is reasonably well captured by the UHF
approximation.

The densities of the competitive states are shown in figure 7—the 3P ML = ±1 (left)
and 5S (right) for the R = 1 and 20 sized spheres; in the 3P case the yz plane is shown. The
spherical symmetry of the 5S state is seen most clearly with the maximal contour (highlighted)
precessing towards the edge of the sphere with increasing R. The 3P ML = 0 state has a
ring-like structure about the z-axis. As in the three-electron case, the radii of the rings are seen
to increase with increasing sphere size.

An investigation of the second-order density matrix for this system (figure 8) indicates that
at high density (R = 1) the 3P ML = ±1 state (left) is weakly correlated with the likeliest place
to find the particles being opposite the reference position. In this figure the reference particle
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Figure 8. The second-order density matrix for R = 1 and 20 for the 3P ML = ±1 state (left) and
the 5S ML = 0 state (right). The reference particle is highlighted and is placed at (0.5R, 0, 0). The
figures are oriented such that the xz plane is shown. For completeness we note that both R = 1
figures show maximal contours with values of ∼2 and enclosing, minimal, contours of ∼0.1. For
the larger, R = 20, systems the density matrices have maximal contours ∼×10−4 with minimal
enclosing contours of ∼×10−5. These values are characteristic of all systems examined.

is placed halfway along the z-axis at r = (0.5R, 0, 0) and is highlighted. Upon increasing R,
the system develops a ring structure opposite the reference particle. This is also seen in the 5S
state (right), where this structure exists even at R = 1.

To probe the correlated motion of the system we calculate the physical exchange–
correlation hole and the second-order density matrix for the 3P ML = 0, R = 20 system. This
is shown in figure 9. In the topmost panel these objects are shown for r being halfway along
the x-axis; this corresponds to placement of the reference particle in a region of high electron
density (due to its ring-like structure). The spatially anisotropic shape of the second-order
density matrix, which exhibits broader peaks in the xy plane, reflects the strongly correlated
motion of the particles. Fixing r = (0.5R, π/2, 0), two electrons are found equidistant
from it (inside the ring of high electron density) with the remaining particle, instead of being
frustrated in this arrangement (due to enhanced Coulomb repulsion), choosing to move in the
xz plane. This is mirrored in nxc where the xy anisotropy is clear in the maximal positive
region. Conversely, with r halfway along the z-axis, (0.5R, 0, 0), there is no spatial preference
and the remaining electrons are found in a ring diametrically opposite the reference particle.

From the three- and four-electron systems studied thus far, it is clear that an analysis of
the many-body properties yields useful insight into the structure of the strongly correlated
regimes found at large R. To summarize: for r along the z-axis the second-order density
matrix preserves the ring-like structure diametrically opposite the reference particle in both
systems. However, for r along the x-axis the collective interactions reveal something about
the correlation between the particles. In the case of three electrons the two remaining particles
are found in the xz plane in a triangular arrangement as would be expected from a classical
Coulombic analysis. In the four-electron case this is not possible and the frustrated motion of
the system is clearly evinced. This has also been noted from a detailed population analysis
of the angular momentum of the three- and four-electron systems, where an interesting link is
posited between hybrid orbital formation and Wigner crystallization [13].



An exact diagonalization study extended 7991

Figure 9. Here we plot both the physical exchange–correlation hole (left) and the second-order
density matrix (right) for the four-electron 3P ML = 0 R = 20 system for the reference particle
placed at (0.5R, π/2, 0) (top, xy plane shown) and (0.5R, 0, 0) (bottom, xz plane shown). The
exchange–correlation holes have been rotated to highlight the anisotropic structure in the positive
region.

Table 5. Breakdown of the kinetic and potential energies of the CI wavefunctions for the four-
electron system in the large sphere limit (R = 20); calculations have been performed using the
1g2f3d4s basis set.

N = 4 〈T 〉 〈U〉 〈E〉
(3P) 0.1199 0.2986 0.4184
(5S) 0.1210 0.2965 0.4175

A breakdown of the total four-electron energy is shown, in table 5. We find a Coulomb
dominance over the kinetic energy, as for N = 3, and a lower 5S 〈U〉 as compared to that
for 3P. It is this difference, despite the increased kinetic energy for this state, that leads to a
decreased 5S total energy.

3.3. Five-electron system

Finally, we turn our attention to the five-electron problem. In figure 10 we examine the energy
convergence as a function of basis set size for the R = 20 five-electron, 4S and 6D states where
the 4S term symbol arises from an s2p3 electronic configuration. The energetically competitive
6D state is of interest, as it corresponds to the lowest of the sp3d manifold associated with a
trigonal bi-pyramid structure—the classically predicted arrangement which would minimize
the localized electron–electron repulsion for large R.

We observe that the two states are well resolved with 4S < 6D, even for large R. Indeed this
is clearly shown in figure 11 where the difference between the states is seen to increase smoothly
(after having first decreased). We note that the five-electron UHF state is ferromagnetic for
sufficiently large R.

Given that the ground state is spherically symmetric, radial plots suffice for describing the
density, and also allow comparison with other similar ground state densities. For example, one
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Figure 10. The convergence of the 4S and 6D five-electron states as a function of basis set. The
largest calculation with 66 spin orbitals contained 8936 928 determinants in the full space. We note
that, interestingly, for very small basis sets the resolution between states is poor.
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configuration interaction 6D and the Ms = 1/2, 3/2 and 5/2 unrestricted Hartree–Fock energies
calculated at the 1f2f3f basis set level.

can ask the question: suppose we add an electron to a four-electron system at fixed R, how
will the electron density rearrange? We plot the spherically averaged density as a function of
distance from the origin for the 5S (N = 4), 4S (N = 5) and 1S (N = 2) states in figure 12. We
see that for large R the four- and five-electron densities are very similar, with almost identically
positioned maxima. The 1S (N = 2) state for R = 50 illustrates that the effect of increasing
the number of electrons is to narrow the width of the density distribution and shift the maxima
towards the edge of the sphere (as a result of enhanced Coulomb repulsion).

4. Conclusions

In this paper we have presented a FCI and UHF study of confined interacting electrons, where
the confining potential is an infinite spherical box, of radius R. We discuss the ground and
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Figure 12. The four- and five-electron singlet densities as a function of R. We see that for large R
the densities are essentially the same. For comparison we also include the 1S two-electron R = 50
density.

low lying excited state solutions for the three-, four- and five-electron systems as a function of
the confining sphere radius. Given the properties of the many-body wavefunction we assign
electronic term symbols to the solutions and find that for small R the 2P, 3P and 4S symbols
label the respective N = 3, 4 and 5 electron ground states. In the four-electron problem a
mobile 5S state is seen to become the ground state at R ∼ 14. It remains the lowest energy state
for all subsequent R considered. This transition to a fully spin-polarized state, as a function
of increasing R, is not observed for the N = 3 and 5 systems.

Comparison of the UHF energies with respect to the FCI solutions leads to the conclusion
that the relative error caused by the independent-electron approximation is most severe in the
crossover regime where the electron system is changing from a liquid droplet to a Wigner
molecule. The pair-correlation functions and exchange–correlation holes exhibit marked yet
characteristic changes in this difficult regime. The subtle balance between kinetic and Coulomb
energy exhibited by these systems, together with the flexibility to tune the electron correlation
present, suggests that they could provide challenging and useful benchmarks for post-Hartree–
Fock and DFT methods.
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